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Abstract

A numerical rate equation model for a continuous wave iodine laser

with longitudinally flowing gaseous lasant is validated by approximating

two experiments that compare the perfluoroalkyl iodine lasants n-C3F7 I
and t-C4F9 I. The salient feature of the simulations is that the production

rate of the dimer (C4F9) 2 is reduced by one order of magnitude relative to

the dimer (C3F7) 2. The model is then used to investigate the kinetic effects

of this reduced dimer production--especially how it improves output

power. Related parametric and scaling studies are also presented. When

dimer production is reduced, more monomer radicals (t-C4F 9) are avail-

able to combine with iodine ions, thus enhancing depletion of the laser

lower level and reducing buildup of the principal quencher, molecular

iodine. Fewer iodine molecules result in fewer downward transitions from

quenching and more transitions from stimulated emission of lasing pho-

tons. Enhanced depletion of the lower level reduces the absorption of las-

ing photons. The combined result is more lasing photons and

proportionally increased output power.
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0

v L

lasant heating from pump, W • m -3

quenching rate coefficient, cm 3 • sec -1

gas constant, 8.314 J. mol q - K -1

_ R j. kg-I . K-I
Mx 10 -3

radical n-C3F7, t-C4F9, or f-C3F 7

reflectivity of highly reflecting mirror, 1.0

reflectivity of output mirror, 0.75

radial coordinate in cylindrical frame, m
r

normalized radial coordinate, -
r t

inner radius of laser tube, m

distance along inner perimeter of laser tube, m

arc length, m
-2

solar constant, 1.35 kW. m

lasant temperature, K

lasant flow speed

axial distance downstream of pump entrance

axial distance on which inversion density

[I*] - [I]/2 > 0, positive gain length, cm

active length of laser tube, 33 cm

length of pump, 15 cm

normalized axial distance downstream of

Z

pump entrance,

ZG+

normalized positive gain length, ZL

Z

normalized pump length, _LL = 0.45

constant for C v (eq. (26)), J- mol -l • K -1

constant for C v (eq. (26)), K -1

distance along light ray, m

absorption length for pumping photons, m

density of lasant gas, kg • m -3

angle, rad

frequency of laser beam, Hz

v
p

_2

p

P+

Pp

PpN

(Y

[1

()

Subscript:

0

pump frequency, Hz

photodissociation rate of [RI], sec -1

photodissociation rate of [I2], sec -j

number density of lasing photons,

p++p ,photons.cm -3

number density of lasing photons moving
-3

along Z-axis, photons - cm

number density of pumping photons,

photons • cm -3

normalized pumping photon density

cross section for laser-beam absorption and
stimulated emission, cm 2

angle, rad

number density, particles • cm -3

average over cross section of laser tube

value at Z = 0

Model Description

Laser Geometry

The CW laser used in references 14 and 15 is shown

schematically in figure 1. The Z-axis of the 1-D mathe-

matical model is parallel to the optical axis of the laser

cavity and points in the direction of the lasant flow. The

origin is located where the lasant enters the elliptical

pump chamber. Upstream of this point, the lasant is
undissociated and does not interact with the laser beam,

provided the lasant is free of absorbing or scattering
impurities. The pumping region spans the distance

0 < Z < Zp, where Zp = 15 cm. We assume that the inci-
dent pumping radiation at the laser tube is axisymmetric.

Measurements of the actual incident pumping radiation

are given in appendix D. Downstream of the pump, the

lasant has a nonzero inversion density and continues to
interact with the laser beam until the lasant is withdrawn

at the end of the tube Z L, where Z = Z L = 33 cm. In the

computation, the active length of the laser tube

(O<Z<ZL) is normalized to unity (0<z < 1), and the

pump spans the normalized distance 0 < z < zp, where

zp = 0.45.

Photochemical Reactions

The kinetic reactions included in the laser model are

as follows.



Introduction

A solar power station advantageously placed in

space could beam power to other spacecraft and to plane-

tary surfaces, including the surface of the Earth, as dis-
cussed in references 1-3. Experiments related to this

concept include tests of solar-simulator-pumped iodine

lasers, as discussed in references 4-7. These experiments

are supported by modeling efforts reported in

references 8-13. An important finding is that the gaseous

perfluoroalkyl iodine lasants n-C3F7I and t-C4F9I have

markedly different production rates for the dimers

(C3F7) 2 and (C4F9) 2. Our modeling effort is devoted

principally to understanding the effects of this differing

dimer production on laser performance.

Lee (ref. 14) and Lee et al. (ref. 15) present two

experimental comparisons of the lasants n-C3F7I and

t-C4F91 when flowed longitudinally in a continuous wave

(CW) laser. Laser output power is measured in the first

comparison as the lasant flow speed is varied and in the

second comparison as the intensity of the solar-simulator

pump is varied. In both comparisons, the output power

Pout for t-C4F9I is found to be about three times greater

than that for n-C3FTI. This increase in Pout is not
explained by an increased utilization of the pump spec-

trum. For the solar simulator used, the pump spectrum

utilization is only 20 percent greater for t-C4F9I than for

n-C3FTI.

The dimer density is represented by [R2], where R

represents either of the perfluoroalkyl radicals n-C3F 7 or

t-C4F 9 and brackets denote the number density. Ershov,
Zalessk[i, and Sokolov (ref. 16) have shown experimen-

tally that the rate of [R2] production is much less for

t-C4F9I than for n-C3FTI, although a numerical value for
the ratio of these production rates is not given. Lee

(ref. 14) notes that the reduced [R2] production increases

t-C4F9I recyclability. He also speculates that the reduced

[R2] production for t-C4F9I would make more monomer
radicals [R] available to combine with iodine atoms [I].

Consequently, more of the laser lower level _] would be

depleted and less [I2], the principal quencher of excited
iodine [I*], would be formed. This reduction of _2]

would also reduce the lasant flow speed.

Our purpose is to examine these speculations and

especially to determine the kinetic effects of reduced

[R2] production on Pout. Our approach is to use a one-
dimensional (I-D) numerical rate equation model. This
model is described in the next section. The model is

tuned by using the data given in references 14 and 15; a

discussion of that process follows the modcl description.

Thereafter, general properties of the tuned model and its

solutions are given. The solutions indicate that the exper-

imental power curves obtained in references 14 and 15

could be improved by optimizing the lasant flow speed w

so that molecular iodine does not build up within the

pump region of the laser. This optimization is based on

parametric and scaling studies that are presented in
appendixes A-D. The flow speed optimization is mod-

eled in the section "Diagnostic Plots," and the n-C3F7I

and t-C4F9I lasants are again compared. A fictitious las-

ant (identical to n-C3F7I except for a reduced [R 2] pro-
duction rate) is modeled in the section, "Optimization of

Laser Performance." The purpose is to isolate the kinetic

effects of reduced [R 2] production. Concluding remarks

are given next and the appendixes follow.

Symbols

B brightness of pump lamp image,
W. m -2. rad-I

C carbon atom

C 1, C2 constants of integration

C specific heat at constant pressure,
P j. mol -_ . K-l

C
C* P J- kg -! . K-

P M x 10 -3'

C
v

¢

c i

e

F

F

f-C3F7I

h

I

6,
I*

12

k.
l

M

Pout

P

Pout

specific heat at constant volume,
J. mo1-1 . K-1

speed of light in vacuum

three-body, reaction-rate
coefficients, cm 6. sec -I

energy density of pump radiation, J - m -3

incident flux of pump radiation, W/m 2

fluorine atom

fictitious lasant identical to n-C3F71 , except

that k 3 and k 4 are reduced by factor of 0.1

Planck's constant, 6.626 x 10 -34 J • sec

iodine atom

intensity of pump radiation, SC

iodine atom in excited state

molecular iodine

two-body reaction rate
coefficients, cm 3. sec -1

molecular weight, g - tool -1

laser output power, W

lasant pressure, Pa

laser output power density, W. cm -2



d (w [I'1 )
dZ = _1 [RI] + 0.51 _2 [121 -kl [R] [I'1

1
-q2[I2] [I*]-c_p([I*]-_[I])

-q3 JR] [I*]- q4 [R2] [I*]

- q5 [I*] [I]- k7 [RI] [I*]

- c 1 [RI] [I*] [I]- ql [RI] [I*] (6e)

= 1.49 _2 [121 +qt [RI] [I*]

+ q2 [I21 [I'1 - 2c 5 [I1 2 [R2]

- k 8 [I] [RII + k 9 [RII
1

+ cop( [I*] - _ [I])

2
- c 1 [RI] [I*] [I] - 2c 2 [RI] [I]

+ 2c 4 [I2] [I] 2_ k2 [R] [I]

+ k4 [RI] [R] + q3 [I*] [R]

+ q4 [I*] [R21 + q5 [I*] [I1

+ k5 [R] II2] (60

where c is the speed of light in vacuum and p is the num-
ber density of lasing photons.

The latter density is given by

p = p++ p_ (7)

where the symbols + and - indicate the direction of pho-

ton motion along the Z-axis. For steady-state CW opera-

tion, these photon densities satisfy the equations

dp+ _ p+o( [I*] !dZ - _. [I1 ) (8a)

dp_ 1
dZ- p__([I*]-_[I]) (8b)

and the boundary condition at Z = 0

At Z = ZL

p+ (0) = RaP - (0) (9a)

p_ (Z L) = Rbp + (ZL) (9b)

where R a and Rb are the mirror reflectivities at Z = 0
and Z= ZL, respectively. The quantity p_(Z) may be

4

eliminated from t_he formulation because equations (8a)
and (8b) are satisfied by

p+ (Z) p_ (Z) = Constant (10)

The boundary conditions (eqs. (9a) and (9b)) then give

9+(0) 2
(1 l a)

RaP + (Z)
p_ (z) -

and from equation (7)

p(Z) = p+(Z)+

2
p+ (0)

Rap + (Z)
(llb)

The boundary conditions (eqs. (9a) and (9b)) also reduce
to

-1/2
p+ (ZL) = p+ (0) (RaRb) (12)

The formulation is now complete in terms of p+(Z), and

p_(Z) is determined from equation (1 la). The output
power density Pout in W. cm-_ is given by

Pout = P+ (ZL) (l-Rb) ChVL (13)

Compressible Fluid Dynamics

Part of the incident pump power is dissipated by
heat. The resulting dependence on Z (m) of temperature
T (K), pressure p (Pa), and speed w (m • sec -1) is deter-

mined approximately from the l-D, steady-state fluid
dynamic equations for an inviscid, nonconducting gas
(ref. 22) as follows.

Continuity equation. Under all these conditions the
continuity equation becomes

d
_--_]w = 0 (14)

where r I is the density (kg • m-3). Hence,

C I
i"1= -- (15)

W

where the constant C l is given by

C l = rl0w 0

where ri0 is the density and w o is the speed at Z = 0.

(16)

Momentum equation. The corresponding

turn equation is

dw 1 dp

dZ r1 dZ

momen-

(17a)



Photodissociation reactions. The parent molecule

RI is irradiated in the pump region, and the following
reaction occurs:

RI+hv --->R + I* (la)
p

where h is Planck's constant, hvp is the energy of
pumping photons, _l is the photodissociation rate of RI,

and I* = 2p1/2, which is the laser upper level. A sequence

of reactions produces 12, which can also be photodissoci-

ated in the pump according to the reactions

_2 _ I+I* (5l-percentprobability)

12 + hvp --9 _ 21 (49-percent probability)
(lb)

where _2 is the photodissociation rate of 12, and I = 2P3I 2,
which is the laser lower level. Photodissociation rates for

_1 and _2 are listed in tabte I with other laser rate coeffi-
cients. Data in this table were obtained from

references 17-21.

Absorption and stimulated emission reactions. Pho-

tons in the laser beam can be absorbed by I atoms or

undergo stimulated emission by excited I* atoms accord-

ing to the reactions

I* + hv L _ I + 2hv L (lc)

wherc hv L is the energy of the lasing photons and t_ is the
cross section for absorption and stimulated emission.

Two-body reactions.

R+I* kl 1

--4 RI

k 2
R +I--9 RI

k 3
R +R--) R 2

k 4
R+RI --) R2 + I

R + I2---_ RI + I

RI + I* k7
---_I2 + R

k 8
I + RI ---_ I2 + R

where k i are two-body reaction-rate coefficients.

(2)

Pyrolysis. The lasant RI and dimer R 2 can also

undergo thermal dissociation, especially at high tempera-

tures. Thus,

k 9
RI --->R + I

2k___o (3)R R+R

Three-body reactions.

I* Cl+I + RI--> I2 + RI
c 2

I+I+RI--_I2+RI
c 4

I +I + I2--) I2 +I 2
c 5

I + I + R2 ---->I2 + R 2

where c i are the three-body reaction-rate coefficients.

(4)

Quenching reactions. The following

quench the excited state of iodine atoms:

ql
I* + RI --> I + RI

I* q2
+I2--->I+I 2

I* q3+R-->I+R
q4

I* + R 2 ---->I + R 2

I* q5+I--_I+I

where qi are the quenching reaction-rate coefficients.

reactions

(5)

Rate Equations

For steady-state CW operation, the I-D rate equa-

tions are purely functions of Z as shown:

d
_--_(w[RI]) : k I[R] [I*] +k2[R] [I]

+ k 5 [R] [12] -k 7 [I*] [RI]

- k 4 [R] [RI]- _1 [RI]

- k 8 [I] [RI] - k 9 [RI] (6a)

d
_--_(w [R] ) = _1 [RI]- k 1[R] [I*] - k2 [R] [I]

- 2k 3 [R]2- k4 [RI] [R]

- k 5 [R] [I 2]+ k7 [RI] [I*]

+ k 8 [I] [RI] + k 9 [RI]

+ 2klo [R 2] (6b)

d + k 4 [RI] [R] - klo [R 2] (6c)_-_ (w JR2] ) : k 3 JR12

d (w [12] )
dZ

= c, [RI] [I'1 [I1 + c 2 [RI] [I1 2

+ c 4 [12] [I] 2 _2 [I2]

+ k 7 [RI] [I*] - k 5 [R] [12 ]

+ c 5 [I] 2 [R2] + k8 [RI] [I] (6d)



experimentalconditionswith thesemostfavorablerate
coefficients).Therefore,someadjustmentof therate
coefficientswasnecessaryforthetheoreticalstudy.Most
rate coefficientsare not measureddirectlybut are
inferredsemiempiricallythroughacombinationof mea-
surementsandmodels.Thus,uncertaintiesin published
valuesof ratecoefficientsdependnotonlyonmeasure-
mentuncertaintiesbutalsoonmodeluncertainties.The
latteruncertaintiesoftenarenotevaluated.

Wishingtodepartfromthepublishedvaluesaslittle
aspossible,weperformeda sensitivitystudywith the
model.Thisstudyshowedthatunderthegivenexperi-
mentalconditions,themodelwasmostsensitivetok 2, k 3,

k 5, and q2 and the output power was increased by

increasing k2 and k5 and by decreasing k 3 and q2.

Accordingly, we multiplied k2 and k5 and also the pump
photodissociation rates El and _2 by a factor of 2.55 and

divided k3 and q2 by the same factor to achieve Iasing

and obtain the n 1-model curve of figure 2(a). These

adjusted values for n-C3F7I are listed in table I, where
temperature dependence is included where known.

The tl-model curve of figure 2(a) was obtained next

by using the t-C4F9I data given in table II(a) and the cor-
responding rate coefficients given in table I. As shown in

table I, the principal difference assumed for t-C4FpI is
that the production rate of the dimer [R2] is reduced by a

factor of 0.1 (reactions k 3 and k4). The other rate coeffi-

cents and parameters are taken to be the same as those for

n-C3FTI, except for M, _, 13, and _1. Various factors for

reduced [R2] production were also tried, but the factor

0.1 gave the best match, subject to the values assumed

for the other rate coefficients of t-C4F9I.

We had originally found that the n2- and t2-model

curves almost overlapped. Recalling that chemical analy-

sis of the n-lasant had revealed a 20-percent dimer impu-

rity, as shown in appendix A, we incorporated this

feature into the model. This change succeeded in increas-
ing somewhat the vertical separation of the theoretical

curves in figure 2(b) without much affecting those in fig-

ure 2(a). Chemical analysis of the t-C4F9I lasant (appen-
dix A) indicated an even higher amount of an unknown

impurity; however, a 20-percent dimer contaminant for

both n-C3F7I and t-C4F9I gave the best match in figure 2.
This adjustment completed our tuning of the model.

Diagnostic Plots

Besides Pout, the laser model computes and plots the
following densities as functions of z: the parent molecule

[RI], the monomer [R], the dimer [R2], molecular iodine

[I2], excited iodine [I*], ground-state iodine [I], the inver-

sion density [I*] - [I]/2, and the lasing photon densities

p+ and P-. Also computed and plotted are T, r I, p, and w.

The plots of these computed quantities (diagnostic plots)

are useful in the analysis of laser performance.

Figures 3-6 present diagnostic plots for the four model

curves of figure 2.

Diagnostic plots for both end points of the n I -model

curve of figure 2(a) are shown in figure 3. These diag-

nostic plots show that the laser is not operating opti-

mally. In figure 3(a), [I2] rapidly builds up at the

midpoint of the pump region (positive normalized gain

length ZG+) and remains high downstream of this point

until, at the exit of the pump region (zp), it reaches an
even higher plateau. The effects of this [I2] buildup on
[I*], [I], and the inversion density [I*] - [I]/2 are shown

in figures 3(b)-3(d). In particular, the inversion density

becomes negative midway through the pump region and

remains so downstream of this point, although it

becomes somewhat less negative at the exit of the pump

region.

These modeling results are consistent with the well-

known observations (ref. 19) that [12] is a strong
quencher of [I*] and can make the inversion density

become negative. This negative inversion density results
in a net absorption of lasing photons on the downstream

half of the pump section, as shown by the curves for the

lasing photon densities p+ and p_ in figure 3(e). In partic-
ular, p+ reaches its peak value in the middle of the pump

section and thereafter decreases all the way to the output

mirror at z = 1. Because Pout is proportional to p+ at the

output mirror, the model laser is not operating optimally.

For optimal operation, p+ would continue to increase
until the flow exits the pump at z = 0.45.

Other features of this model run warrant explanation

as well. Because [R] reacts much more readily with [I]

than with [I*] to form [RI] (i.e., k 2 >> kl), [R] decreases

rapidly as [I] increases at the midpoint of the pump sec-

tion, as shown in figure 3(f). The distribution of [R 2] is

nonzero at z = 0 because of the 20-percent initial [R2]

contaminant, as shown in figure 3(g).

Figures 3(h)-3(k) show plots of T, w, 11, and p
(almost constant). These four plots are representative of

all the model runs and are subsequently omitted. The
moderate increases in T and w' from solar-simulator-

pump heating generally agree with the experiments in

which a water-cooled quartz laser tube was used. (See

fig. 1.)

The tl-model curves of figure 4 and one n2-model

curve (Ip = 1100 SC) of figure 5 also show similar non-
optimal laser performance. However, in the other

n2-model curve (lp = 450 SC) of figure 5 and in the
t2-model curves of figure 6, the buildup of [I2] occurs

only downstream of the pump, which indicates optimal
operation.
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From equation (16), this equation may be written as

d
d---_(P+ClW ) = 0 (17b)

Upon integration, we obtain

p = C2-CIw (18)

where

C 2 = po + ClW o (19)

Equation of state. If the lasant is idealized as a per-

fect gas, the equation of state is given by

p = rlR*T (20)

Here, R* (J • kg -I • K -1) is given by

R* - R (21)
Mx 10 -3

where the ,gas constant R = 8.314 J- mol -z - K -I, and
M(g • mol-') is the molecular weight of the lasant. Solv-

ing equation (20) for T, we obtain

(22)

From equation (20), C l may also be written

PoWo

C 1 R'To (23)

where P0, w0, and TO are all measured quantities.

Energy equation. The I-D, steady-state energy

equation for an inviscid, nonconducting perfect gas is

given by

C* dT dp
qw_--_- w_-_ = Q (24)

where C* (J • kg -l • K -1) is the specific heat at constant

pressure"divided by M× 10 -3, and Q (W. m -3) is the

heat from the incident pump radiation. From

equations(15), (18), and (22), this equation may be
rewritten as

dw R*Q

dZ R*CIW+Cp(C2_2C1w )

(25)

Specific heats. In equation (25), Cp may be approxi-
mated from data in reference 22 as follows. The specific

heat at constant volume C v (J. mol -j • K -I) is closely

approximated by

C v = ct exp [1_ (T- 300) ] (26)

where t_ and [3 are constant for each lasant as given in

table I. The specific heat at constant pressure Cp in
J. mo1-1 • K -1 is

C = C + R (27)
p v

Thus, we have (in J. kg -1 • K -x)

Cp. _ et exp [ [3 (T - 300) ] + R* (28)
M× 10 -3

and from equation (22)

Cp M× 10 -3 1" LR*k'ClJ ) JJ

(29)

Equation (29), which for a given lasant gas gives Cp as a

function of w, is appropriate for substituting back into

equation (25).

Numerical integration procedure. For a given heat-

ing rate Q(Z) and values for the constants C 1 and C 2
(obtained by measuring Po, To, and w 0 at Z=0),

equation (25) can be numerically integrated to give w(Z).

The other fluid dynamic fields, q(Z), p(Z), and T(Z) fol-

low from equations (15), (18), and (22), respectively.

The flow speed w(Z) appears explicitly in the rate

equations (6a)-(6f). The density rl(Z) determines the par-

ent molecule number density [RI], and T(Z) enters the

temperature-dependent rate coefficients.

Model Tuning

The rate equation model was tuned by matching as

closcly as possible the experimental curves for the las-

ants n-C3F7I and t-C4F9I, as given in references 14 and

15. The laboratory data for these curves are given in

tables II(a) and II(b), where the original lasant flow units

in standard cubic centimeters per second have been con-

verted to meters per second. The wide range of pressure

and pump Ip intensity values makes these data sets
appropriate for tuning the model. The best match
achieved with the model is shown in figure 2. This

match, although imperfect, was obtained with difficulty
as described in the discussion that follows.

The data in table II(a) for the n 1 experiment curve of

figure 2(a) gave a theoretical Pout = 0 W when used with

the published rate coefficients for n-C3F7I that are the
most favorable for lasing (i.e., the model did not even

reach the threshold for lasing under the given

5



reduced [R 2] production are highly beneficial to efficient

operation of a CW iodine laser.

Concluding Remarks

Two experiments which compare the performance of

the lasants n-C3F7I and t-C4F9I can be approximated by a
one-dimensional numerical rate equation model. In this

model, the principal difference assumed for the lasants is

that the dimer production rate for t-CqF9I is one order of

magnitude less than for n-C3F7I. The model results indi-
cated that laser output power could be increased by opti-

mizing the lasant flow speeds so that the principal

quencher, molecular iodine, does not build up within the

pump region. This optimization method was based on

parametric and scaling studies that are also presented.

Such optimized model runs showed that t-CqF9! had a

larger output power than n-C3F7I, although the power
increment depended on the operating conditions.

Optimization of the flow speeds improved the basis

for comparing n-C3F7I and t-C4F9I; however, the kinetic
effects of reduced dimer production were still not clear

because the two lasants had different molecular weights,

pump spectrum utilizations, densities, and flow speed. To

clarify these kinetic effects and determine how reduced

dimer production results in greater output power, we also

modeled a fictitious lasant f-C3F7I, which differed from

n-C3F7I only by a reduced dimer production rate. The

results of this theoretical comparison confirmed earlier

speculations; that is, simply by reducing dimer produc-

tion, we produce more monomer radicals (C3F7). These
radicals then combine with iodine atoms to enhance

depletion of the laser lower level and reduce the growth

of the principal quencher, molecular iodine. Both of

these effects tend to increase the lasing photon density

and, hence, the output power.

This theoretical study also found that an order-of-

magnitude decrease in the dimer production rate halves

the lasant flow speed required to prevent the buildup of
molecular iodine in the pump region. Also, more lasant

molecules are recovered after they pass through the laser

tube and less iodine molecules are produced; hence,
reduced dimer production improves lasant recyclability.

If other properties are equal, reduced dimer production is

clearly a desirable feature for the flowing lasant in a con-
tinuous wave iodine laser.

NASA Langley Research Center
Hampton, VA 23681-0001
December 23, 1994



Optimization of Laser Performance

Although we cannot prevent the buildup of [I2]

downstream of the pump, we can prevent it inside the

pump region, where it does the most harm, by increasing

the lasant flow speed w. This effect of w--together with

other factors that could be used to control the buildup of

[I2]--is discussed in appendix B. In this context, we take

the optimal w to be the minimum flow speed for which

the buildup of [I2] occurs only downstream of the pump.

We found that optimizing the theoretical power

curves in figure 2 provides a better way to compare the

lasants n-C3FvI and t-C4FgI. Optimizing the n I- and
tl-model curves of figure 2(a) by increasing w and by

eliminating the initial dimer contaminant (i.e., setting

JR2(0)] = 0) gives the increased Pout shown in figure 7.
These curves show that under optimal conditions,

t-C4F9I gives about twice as much output power as
n-C3F7I at about half the flow speed. Figures 8 and 9

present diagnostic plots for both end points of each opti-

mized curve shown in figure 7. These plots confirm that

the buildup of [I2] occurs downstream of the pump and
that the inversion density [I*] - [I]/2 is positive through-

out the pump region.

Similarly, optimization of the n2- and t2-model

curves of figure 2(b) gives the increased Pout shown in

figure 10. Again, t-C4F9I has higher output power than

n-C3F7I, although the results are less dramatic. We con-
clude, for optimized flows, that t-C4F9I is superior to

n-C3F7I; however, the difference in output power

depends on the operating conditions.

Kinetic Analysis of Reduced Dimer Production

Although optimization of the power curves, as

shown in figures 7 and 10, facilitates comparison of the

lasants n-C3F7I and t-C4F9I, it does not clarify the kinetic
effects of reduced dimer production because the opti-

mized t-model curves--besides having reduced dimer

production relative to the optimized n-model curves-

"also have different pump-spectrum utilizations, molecu-

lar weights, specific heats, densities, and flow speeds.

To analyze unambiguously the effects of reduced

[R2] production, we considered a fictitious lasant f-C3F7I

in which the only' difference from n-C3FvI is reduced val-

ues for k 3 and k4. We start with the nl-model optimal

curve of figure 7. Because [I2] builds up only down-

stream of the pump, the same will be true for the

fl-model (obtained from the nl-model optimal curve by

reducing k 3 and k 4 by a factor of 0. ! without changing w
or anything else).

Reduced dimer production (without other changes)

gives the increased Pout shown by the fl-model curve

relative to the n 1-model optimal curve in figure I I. Diag-
nostic plots for the fl-model are presented in figure 12

for comparison with the diagnostic plots for the

nl-model optimum, as presented in figure 8. These diag-

nostic plots are supplemented by detailed plots of [I2]
and [RI] for the two models in figure 13.

These diagnostic and detailed plots show clearly that

a reduced [R2] production rate decreases [R2], [I2], [I],
[I*], and [I*] - [I]/2 in the pump region and increases [R],

[RI], p+, and p_. The results confirm the speculations

made in reference 1; that is, the decrease in [R2] and [I2]
and the increase in [RI] improve lasant recyclability. The

reduced [R2] production results in a greater density of

monomer radicals [R] in the pump region that can com-

bine with iodine atoms [I] and thus enhance depletion of

the laser lower level and reduce the buildup of the princi-

pal quencher [I2]. The lower value of [I2] increases 9+

and P- because fewer downward transitions occur by

quenching and more by the stimulated emission of lasing

photons. The lower value of [I] reduces the absorption of

p+ and p_. Hence, the reductions in [I2] and [I] both help

increase the output power Pout, which is proportional to

p+ at the output mirror.

After repeating this reduced dimer analysis with the

n2-model optimal curve of figure t0 and the fictitious

lasant f-C3FTI, we obtain the increased Pout shown by the

fictitiousf2-model curve in figure 14. Figures 11 and 14

clearly show that simply by reducing the dimer produc-

tion rate, we were able to increase output power,
although the amount of increase depends on the operat-

ing conditions.

Although not shown, the diagnostic plots for the
n2-model optimum and thef2-model are similar to those

given in figures 8 and 12 for the n 1-model optimum and

the fl-model, respectively. The corresponding detailed

plots are given in figure 15, which again shows that the

reduction of [R2] production increases [RI] and decreases
[I2]. This second comparison reinforces the previous

conclusions about the benefits of reduced JR2]

production.

Finally, we investigate the speculation that reduced

[R2] production allows the lasant flow speed w to be

reduced. In figure 11, the values of w0 for the fictitious

fl-model are the same as for the n 1-model optimum. We

now optimize the fl-model by reducing w 0 to the mini-

mum values that still prevent the buildup of [I2] inside

the pump. We find that w 0 can be halved and that Pout is

not significantly affected, as shown in figure 16. Diag-

nostic plots for the fl-model optimum (halved w0) are

shown in figure 17. These plots confirm that [I2] builds

up only downstream of the pump. Although not shown,

similar results are obtained when the fictitious f2-model

of figure 14 is optimized by halving w 0. These effects of
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Appendix A

GasChromatographic-Mass Spectrometric
Analysisof Lasantsn-C3F7Iand t-C4F9I

A gas chromatographic-mass spectrometric (GCMS)

device was used to examine samples of the two lasants.

The findings are summarized below.

Analysis of n-C3FTI Sample

No significant difference was noted between the pre-

and postlased n-C3FTI material. The analysis revealed the

following compounds:

(C3F7) 2 --20 percent

C2F5I Trace amounts

n-C3F7I _-80 percent

Unknown perfluorocarbon Trace amounts

C2F4CII Trace amounts

The presence of 12 was not detected in the GCMS

analysis, even though 12 was visually detectable in the
postlased sample. Several explanations can be given for

the absence of 12 in the postlased sample: the 12 peak was

masked by either the (C3F 7 )2 dimer peak or the n-C3F7I
peak, the 12 was trapped on the gas chromatograph col-

umn, or the 12 concentration was so small that it was not

detected on the gas chromatograph.

Analysis of t-C4F9I Sample

More than 20 gas chromatographic peaks were

detected. Only the ethyl alcohol and t-C4F9I peaks could
be identified. The remaining peaks contained perfluoro-

alkyl iodine compounds and perfluoroalkanes. The major

peaks are listed below and are approximate.

Peak

15
62-83

444-480
1154

Identification

Ethyl alcohol
t-C4F9I

Unknown
Unknown

Sample, percent
3

35
6O
2



Appendix B

Parametric and Scaling Studies

As shown in figure 3, the inversion density [I*] - [I]/

2 > 0 for only a fraction of the pump length Zp. We
termed this fractional distance the positive gain length

ZG+. We performed a parametric study to determine how

ZG+ varies with flow speed w, number density [RI], and

pump intensity lp. The result is expressed by the
proportionality

_7

ZG+_: [RI]-----_ (B1)

An increase in w retards the buildup of [I2], whereas

an increase in [RI] and lp increases the level of
photoionization and accelerates the buildup of [I2]. This
proportionality was used to optimize the laser model (to

achieve positive gain throughout the pump region) by

increasing w until ZG+ = Zp.

A scaling study was also performed to determine

how output power density Pout (W • cm -2) scales for sim-

ilar lasers--lasers that have the same ratio of positive

gain length to pump length ZG+/Z p. For such similar
lasers, Pout was found to scale according to the

proportionality

Pout o_ ZG+I [RI] (B2)

The output power Pout in W scales with the inner

radius r t of a circular cylindrical laser tube according to

the proportionality

Pout _: (PpN)r_ (B3)

where (PpN) is the normalized density of pumping pho-
tons averaged over the cross section. A derivation of

(PpU) as a function of the ratio r/8, where 8 is the pump-
ing photon absorption length, is given in appendix C.

The scaling study may be summarized as follows:

Two optimal CW iodine lasers are similar if the lasant

flow speeds satisfy the relation

w___}2 = Z 2 [RI] 2/_p2 034)

wI IRIll

For such similar lasers, the output power Pout scales as

2
Pout2- Zp2 [RI]2 /2 rt2 (PpN2)

Z (PpN1)eoutl ZI [Rill /pl rtl

(B5)

A plot of (PpN) as a function of r/8 is given in
appendix C.
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Appendix C

Derivation of Average Pumping Photon

Density in Absorbing Lasant With Circular

Cylindrical Symmetry

This appendix provides a derivation of the quantity

(PpN) used to scale the output powers of equation (B5) in
appendix B.

Two-Dimensional Relation of Incident Flux to

Transmitting Surface Brightness

Assume that the laser tube and the incident pump

radiation are axially symmetric and independent of Z.

(Appendix D gives a discussion of how this idealization

compares with theoretical and actual elliptical pump

chambers.) We also assume that the optical image of the

pump source fills the interior of the laser tube, as shown

in figure 18, where the curved wall of the circular glass

tube acts as a negative lens. Furthermore, we assume that

in the absence of absorption the pump intensity is uni-

form and isotropic on a cross section of the pump image.

Then, if we take a point on the perimeter, as shown in
figure 19, the image brightness B (W. m -2 • rad -l, inter-

preted as watts per meter perimeter per meter depth per

radian) can be integrated to determine the incident flux of
pump radiation F (W. m-2):

rcl2t,w

F = | Bcos0 dO = 2B (C1)
3-re/2

where the angle 0 is in radians. A comparable 3-D rela-

tion is given in reference 23 on page 23.

Pumping Photon Density Transmitted by Surface
Element

We now determine the differential pumping energy
density de (J • m -3) at an interior point at depth y due to

incident radiation passing through length dS of the

perimeter, as shown in figure 20. Initially, assume that
the laser tube is evacuated so that absorption is not a fac-

tor. Then, the power within ray dO (W. m -1 depth)

is given by B cos 9 dS dO. Because this power results

from photons moving at the speed of light in vacuum c,
2

the pumping energy (J • m- (per meter depth per meter

length)) within dO is given by (B/c) cos 0 dS dO. But

dO = dsly, hence, de (J- m -3) due to the incident radia-

tion that penetrates dS is given by

de = Bcos0 dS (C2)
c7

and the corresponding pumping photon density dpp
(photons • m -3) is given by

B

dpp - hVpcTCOSO dS (C3)

For an absorbing lasant gas, this photon density becomes

B

dpp - hVpC 7 exp (-7/_) cos 0 dS (C4)

where 5 is the absorption length at the pump frequency.

Total Pumping Photon Density at Interior Point

Due to Axisymmetric Incident Flux

Substitution of equation (C1) into (C4) gives de at

point H of figure 21 when F is transmitted through dS:

F

dpp - 2hVpC7 exp (-7/_5) cos 0 dS (C5)

However, by introducing the angle _ shown in figure 21

we may write

cos0
d_t = -- dS (C6)

T

and equation (C5) becomes

F
dpp - 2chv exp (-y/_5) d_ (C7)

p

The total pumping photon density (photons. m -3) at

point H in an absorbing gas may then be written

F n

pp = _ _'0exp (-y/_i)d_ (C8)

and by the law of cosines

J2 2.2= -rcos_+ r t-r sm _1/ (C9)
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Hence,thepumpingphotondensity(photons.m-3) at
radiusr in an absorbing lasant is given by

ll(pp(r,r t,5) - F exp _ rcos_
ChVp

- r t -r sin W dgt (CIO)

The average pumping photon density over the cross sec-

tion is given by

(pp (rt, _) ) = --_ _o'dr 2xr pp (r, rt, 5)
ff, r t

(Cll)

Normalized Pumping Photon Densities

In the limit as 8 --->_, equation (CIO) gives the uni-

form photon density for a nonabsorbing lasant as

TcF
pp (I --) oo) = ch---'_ (C12)

P

Using this quantity to normalize the photon density in

equation (CI 0), we obtain

1 f_ _rt (rNcos _PpN(rN, rt/6) = _ J0exPL_

(c13)

where rN = r/r t is the normalized radius. Plots of this nor-

malized pumping photon density versus the normalized

radius are given in figure 22 for various values of rt/6.

The average pumping photon density in an absorbing

lasant, as given by equation (C11), can also be normal-

ized by

( PpN (rt/_))) = 2[.10drNrNPpN ( rN' rt/8) (C 14)

This normalized average pumping photon density is plot-

ted versus rt/5 in figure 23. This quantity is an important
factor in the scaling relation (eq. (B5) from appendix B)

for calculating how output power scales with the radius
of the laser tube.

12



Appendix D

Theoretical and Experimental Performance of

Elliptical Pump Chamber

A ray tracing for the elliptical cross section of the

pump chamber used in the laser experiments is shown in

figure 24(a). The rays are assumed to emanate isotopi-

cally from a line source (perpendicular to the page) at the

right focus. However, the rays incident on the laser tube
at the left focus are found to be nonisotropic. As shown

in figure 24(a), they are more concentrated on the side

toward the source. A decrease in the distance between

the focii in the elliptical pump chamber makes the inci-

dent radiation at the laser tube more isotropic, as shown

in figure 24(b).

An experimental polar plot of the incident pumping

radiation measured inside the laser tube is shown in fig-

ure 25. Differences from the theoretical plots result from

the finite size (11 mm diameter) of the pump lamp, from

obstruction by the lamp start-up wire, and from imper-
fections in the curvature and finish of the optical sur-

faces, including the elliptical cylinder and the flat end

plates.
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Table I. Lasant Rate Coefficients and Other Parameters

Parameter

kl

*k2

"tk3

/'4

*k5

k7

k8

k9

kl0

ql

iq2

q3

q4

q5

Cl

c2

c4

c5

_2

O_

f_
M

[R2(0)]

Unit

cm 3

cm 3

cm 3

cm 3

cm 3

cm 3

cm 3

cm 3

cm 3

cm 3

cm 3

cm 3

cm 3

cm 3

cm 6

cm 6

cm 6

. sec -1

• sec -1

• sec -1

• sec -1

• sec -1

• sec -1

. sec -1

• sec -1

• sec -1

. sec -1

. sec -1

.sec -1

.sec -1

• sec -1

.sec -1

• sec -I

. sec -1

Lasant

n-C3F7I

1 x 10 -14

(2.04 + 1.02) x 10 -11

(7.84 + 1.18) x 10 -13

3 x 10 -16

2.55 x 10 -11

(3 + 1.5) x 10 -19

1.6 x l0 -23

1 x 1015exp(-2.48 x I04/T)

1 x 1017exp(-4.73 x 1041T)

(1.7 + 0.2) x 10 -17

(1.49 + 0.10) x 10 -11

x exp[-4.4 x 10-3(T-300)]

3.7 x 10 -18

4.7 x 10 -16

1.6 x 10 -14

1.6 x 10 -33

(5.7 + 1)x 10-33exp[(1360 + 200)/T]

antilog10{-29.437 - 5.844 lOgl0(T/300)

+ 2.163 [lOgl0(T/300)] 2}

t-C4F9I

Same

Same

(7.84+ 1.18)x 10 -14

3 x 10 -17

Same

Same

Same

Same

Same

Same

Same

Same

Same

Same

Same

Same

Same

cm 6 . sec -1

sec - I

sec- I

j. mo1-1 . K-J

K-I

g • mol -I

cm-3

(8 + 2) x 10-33exp[(1310 + IO0)/T]

(i .2 + 0.4) x 10-2Ip

(1.2 _+0.4) x 10-11p
147.23

1.2 x 10 -3

296

0.2 [RI (0)]

Same

(1.44 + 0.48) x 10-2Ip

Same

183.26

1.4 x 10 -3

346

Same

Reference

17

18

18

19

19

19

19

19

19

18

19

19

19

19

20

19

19

19

21

21

*Cited value multiplied by 2.55.
tCited value divided by 2.55.
_:Semiempirical value multiplied by 2.55.
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TableII. ExperimentalDataforComparisonofLasantsn-C3F7Iandt-C4F9I

(a)Basedonreference14andplottedinfigure2(a);
Ip = 1000 SC; To = 300 K

wO, m • sec -I Po, torr Pout, W

Lasant n-C3F7I

5.75 ! 2.0 4.0

6.96 14.0 6.0

7.40 17.0 7.2

Lasant t-C4F9I

5.07 14.0 l 1.1

6.45 17.0 13.8

6.72 14.5 12.5

(b) From reference 15 and plotted in figure 2(b)

Ip, SC w0, m • sec -1 Po, torr Pout, W

Lasant n-C3F7I

450

600

740

925

l l00

6.6

6.6

6.2

6.4

5.8

5.6

5.6

6.0

5.8

6.4

1.4

1.8

2.2

2.4

2.7

Lasant t-C4F9I

450

600

740

925

I lO0

5.5

7.3

7.3

7.1

7.1

9.0

4.5

4.5

4.2

4.2

5.8

6.5

7.2

8.4

9.8
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Figure 1. Laboratory schematic of CW iodine laser with longitudinally flowing lasant gas and continuous pumping by

argon arc lamp.
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Figure 2. Experimental comparison of output power from n-C3FTI and t-C4F9I with corresponding model-tuning curves.
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Figure 15. Detailed theoretical plots for fictitiousf2-model and n2-model optimum of figure 14 at lp = 740 SC.
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Figure 17. Continued.
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Figure 18. Cross section of elliptical pump chamber.
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+

Figure 19. Cross section of laser tube with pump image brightness B and incident flux F.
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0

Figure 20. Cross section of laser tube with ray geometry.

1

Figurc 21. Cross section of laser tube with geometry for computing total pumping photon energy density at radius r in

absorbing lasant.
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Normalized pumping photon density PpN versus normalized radius rN for various values of rt/B.
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Figure 23. Normalized cross-sectional average pumping photon density (PpN) versus rt/5.
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Laser---I !___Line
tube source

(a) Elliptical section used in laser experiments.

Laser tube ---j L Line source

(b) Elliptical section with closer focii.

Figure 24. Theoretical ray tracing for elliptical pump chamber with line source at right focus.
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Figure 25. Polar plot of normalized incident pumping intensity lp measured at inner radius of laser tube for elliptical

pump chamber used in laser experiments. Corresponding theoretical ray tracing is shown in figure 24(a).
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